Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Pathologist
  • Explore Pathology

    Explore

    • Latest
    • Insights
    • Case Studies
    • Opinion & Personal Narratives
    • Research & Innovations
    • Product Profiles

    Featured Topics

    • Molecular Pathology
    • Infectious Disease
    • Digital Pathology

    Issues

    • Latest Issue
    • Archive
  • Subspecialties
    • Oncology
    • Histology
    • Cytology
    • Hematology
    • Endocrinology
    • Neurology
    • Microbiology & Immunology
    • Forensics
    • Pathologists' Assistants
  • Training & Education

    Career Development

    • Professional Development
    • Career Pathways
    • Workforce Trends

    Educational Resources

    • Guidelines & Recommendations
    • App Notes

    Events

    • Webinars
    • Live Events
  • Events
    • Live Events
    • Webinars
  • Profiles & Community

    People & Profiles

    • Power List
    • Voices in the Community
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
Subscribe
Subscribe

False

The Pathologist / Issues / 2019 / Jun / The Limits of Automation
Laboratory management Technology and innovation Software and hardware Profession Professional Development

The Limits of Automation

Augmented intelligence for better prior authorization outcomes

By Navaneeth Nair 06/11/2019 1 min read

Share

Several major health insurers across the USA have been implementing prior-authorization processes or some form of a laboratory benefits management program. These insurers are admitting that they lack the laboratory medicine expertise to determine medical necessity, so they are putting the responsibility back on the providers to minimize fraud and abuse within the industry. That move, in turn, is leading to more effort for already overworked staff members, who must handle the burdensome task of a seemingly endless number of manual insurance verifications and prior authorizations.

Many see completely automated solutions as the answer to this problem, but – despite all the advances in artificial intelligence (AI) – a machine simply can’t do it all. AI exists to help humans make better decisions, not to automate 100 percent of a task. Decision-making, as it applies to the healthcare industry, still requires human intelligence and human empathy. As a result, providers should be looking to “augmented intelligence.”

The American Medical Association says that “augmented intelligence” reflects the enhanced capabilities of human clinical decision-making coupled with AI’s computational methods and systems. Make no mistake – we need AI in healthcare because the industry is swimming in data. As a result, the value proposition with the most potential is to provide a tool that can take the data, make sense of it, and present it in a way that allows people with knowledge and empathy to make the best decisions. The outcome very much needs to be a product of human determination.

The best outcomes in healthcare are the result of good intelligence and great execution. With advances in technology, AI is able to take administrative processes, such as prior authorization or revenue cycle management, off the plates of people who have more important jobs to do. Such systems can help us make better decisions while continuously learning from the data previous experiences have yielded.

In my opinion, digital labor will upend the healthcare processes – but in a positive manner. AI will accelerate current employee expertise, augment decision making, reduce manual processing costs and risks, increase consistency of output, and develop continuous self-learning processes. The best platforms to manage the healthcare revenue cycle will combine robotic automation, AI, and deep domain expertise – otherwise known as human intelligence – to assist practices with prior authorization, coding, and billing needs.

The robotic automation component is designed to handle the administrative “grunt work,” which results in significant reductions in process cost with improved quality.

The AI component is designed to continuously learn and improve from all data and interactions to provide prescriptive insights for decision-making, while increasing process transparency. Notably, predictive models are inherently simple to build, but difficult to maintain. Why? Because none of our healthcare processes remain stable enough to use the data and patterns that are produced. Practices need a solution that seamlessly integrates the process and constantly accesses the latest and most relevant data. And that’s why AI must be prescriptive and not just predictive; predicting the outcome without the ability to explain (black box AI) is limiting – particularly in healthcare, where we need to better understand machine rationale before applying it.

Lastly, the human component is required to make the decisions robotic automation and AI cannot. Only people with empathy and knowledge of each unique situation can tailor a patient’s experience to their individual context and needs. Those practices seeking completely automated solutions for prior authorization or LBM programs should instead look to a solution that does not remove the human intelligence factor. Many general-purpose AI solutions are nothing more than spot analytics solutions branded as AI, which require significant investments with uncertain results. Someday, AI may evolve to the point of completely automating the prior authorization process – but, until that day, practices should look to incorporate human intelligence for better decision making and outcomes.

Newsletters

Receive the latest pathology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

About the Author(s)

Navaneeth Nair

Vice President of Products at Infinx Healthcare, San Jose, USA.

More Articles by Navaneeth Nair

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Medicare Pathology Payments in 2021
Laboratory management
Medicare Pathology Payments in 2021

January 26, 2024

1 min read

A national Medicare report extract for pathologists reveals where payments went in the US in 2021

R-Tracker: The First of Its Kind
Laboratory management
R-Tracker: The First of Its Kind

December 29, 2021

1 min read

Milestone is committed to enhancing patient safety with a new disruptive technology

The Pathologist’s 2016 Power List
Laboratory management
The Pathologist’s 2016 Power List

October 18, 2016

1 min read

Let’s celebrate the successes of our field by shining a spotlight on the next generation.

The Times They Are A-Changin’
Laboratory management
The Times They Are A-Changin’

October 21, 2016

1 min read

Or at least I hope they are, but I need your help…

False

The Pathologist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.