Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Pathologist
  • Explore Pathology

    Explore

    • Latest
    • Insights
    • Case Studies
    • Opinion & Personal Narratives
    • Research & Innovations
    • Product Profiles

    Featured Topics

    • Molecular Pathology
    • Infectious Disease
    • Digital Pathology

    Issues

    • Latest Issue
    • Archive
  • Subspecialties
    • Oncology
    • Histology
    • Cytology
    • Hematology
    • Endocrinology
    • Neurology
    • Microbiology & Immunology
    • Forensics
    • Pathologists' Assistants
  • Training & Education

    Career Development

    • Professional Development
    • Career Pathways
    • Workforce Trends

    Educational Resources

    • Guidelines & Recommendations
    • App Notes

    Events

    • Webinars
    • Live Events
  • Events
    • Live Events
    • Webinars
  • Profiles & Community

    People & Profiles

    • Power List
    • Voices in the Community
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
    • Pathology Captures
Subscribe
Subscribe

False

The Pathologist / Issues / 2019 / Nov / A Whole New (Microbial) World
Microbiology & Immunology Microbiology and Immunology Genetics and epigenetics Biochemistry and molecular biology Infectious Disease

A Whole New (Microbial) World

Thousands of previously undiscovered tiny proteins exist right under our noses

By Luke Turner 11/07/2019 Quick Read (pre 2022) 1 min read

Share

The microbiome is a diverse collection of bacteria closely intertwined with all aspects of human health. Over recent years, efforts to shift microbiome research from descriptive to mechanistic have revealed remarkable genetic diversity. However, the challenge of linking gene to phenotype is a complex one, especially because current annotation techniques disregard an entire class of genes. Known as small open reading frames (sORFs), these genes encode potentially significant proteins – and that’s why Ami Bhatt and her team at Stanford University wanted to uncover their diverse functions (1).

“Small proteins are easy to miss for two reasons,” says Bhatt, an Assistant Professor of Medicine and Genetics. “Most bioinformatic algorithms do not annotate proteins made up of less than 30–50 amino acids. This is because start and stop codons are often closely located – and annotating them without additional filters would produce a lot of false positives. Also, biochemical approaches to finding proteins usually involve physical dialysis or size-based separation, which are optimized for proteins of a regular size.” These challenges leave many small proteins undetected, which could therefore hinder our understanding of microbial communication.

Yet it is these elusive proteins’ small size that makes them so interesting. “Because they can be transcribed and translated quickly, they could be used by bacteria as biological switches to toggle between functional states or to trigger specific reactions in other cells,” Bhatt says. The proteins may also serve regulatory functions and play a crucial role in larger cellular structures.

In an attempt to unmask the tiny proteins, the team compared potentially relevant genes among different microbes to isolate those that appeared repeatedly (and were therefore more likely to be true positives). Although they expected to find hundreds of genes, the search uncovered tens of thousands. The proteins encoded by these genes are believed to play a role in important biological processes, such as intercellular communication and warfare. “The most exciting part was realizing that, despite using these microbial genome datasets for years, we’ve never taken note of this entire class of proteins that was right under our noses.”

The next steps will be to recreate the shapes and functions of the newly discovered proteins in the lab. “The proteins that aren’t secondarily modified might be relatively easy to use in heterologous expression or even synthesize directly. And that will help us to determine exactly which sORFs are transcribed and translated, and understand what regulates their expression,” explains Bhatt. “We also want to discover which microbial proteins bind to host-associated signaling receptors.” Ultimately, the newly discovered proteins could advance our understanding of how the microbiome affects human health and open the door for new tests and treatments.

Newsletters

Receive the latest analytical scientist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

References

  1. H Sberro et al., “Large-scale analyses of human microbiomes reveal thousands of small, novel genes”, Cell, 178, 1245 (2019). PMID: 31402174.

About the Author(s)

Luke Turner

While completing my undergraduate degree in Biology, I soon discovered that my passion and strength was for writing about science rather than working in the lab. My master’s degree in Science Communication allowed me to develop my science writing skills and I was lucky enough to come to Texere Publishing straight from University. Here I am given the opportunity to write about cutting edge research and engage with leading scientists, while also being part of a fantastic team!

More Articles by Luke Turner

Explore More in Analytical Science

Dive deeper into the analytical science. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Context Matters in Cancer Biology
Microbiology and Immunology
Context Matters in Cancer Biology

December 27, 2021

1 min read

Akoya is leading the way with spatial phenotypic signatures – a novel class of biomarkers for predicting response to immunotherapy

What’s New in Infectious Disease? (December 2021)
Microbiology and Immunology
What’s New in Infectious Disease?

December 23, 2021

1 min read

The latest research and news on COVID-19 and the infectious disease landscape

Immunology Insights
Microbiology and Immunology
Immunology Insights

January 13, 2022

1 min read

The latest research in pathology and laboratory medicine

2021: A Laboratory Medicine Roundup
Microbiology and Immunology
2021: A Laboratory Medicine Roundup

January 18, 2022

3 min read

From transgender health care to the power of pathology podcasts, we take a look at our most popular articles of the last year

False

The Pathologist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.