Cookies

Like most websites The Pathologist uses cookies. In order to deliver a personalized, responsive service and to improve the site, we remember and store information about how you use it. Learn more.
Subspecialties Biochemistry and molecular biology, Companion diagnostics, Microbiology and immunology, Genetics and epigenetics, Liquid biopsy, Screening and monitoring, Oncology, Omics

A Boost for Cervical Cancer Screening

At a Glance

  • Cervical cancer is the fourth most common cancer in women, causing 270,000 global deaths in 2015
  • The existing test for human papillomavirus (HPV) – a key risk factor of cervical cancer – lacks specificity
  • A combination of droplet digital PCR and a circulating cell-free HPV DNA assay offers higher specificity for the cancer
  • Studies have shown a 100 percent success rate in identifying and genotyping HPV-positive with recurrent metastatic cervical cancer cases; the ddPCR method is undergoing clinical trials for patient selection for T-cell immunotherapies

Despite a declining incidence rate in the US, cervical cancer remains the fourth most common cancer in women worldwide, causing 270,000 deaths in 2015, according to the World Health Organization. High-risk, persistent HPV infections are often a precursor to the disease, with about 0.8 percent of patients developing cancer over 10 to 30 years. The current HPV test with Pap samples, although very sensitive, can be relatively nonspecific and requires extensive follow-up testing for high-risk, HPV-positive patients. To tackle that problem, we and our colleagues at the National Cancer Institute (NCI) decided to create a more specific alternative by developing a blood-based HPV circulating cell-free DNA (ccfDNA) assay (1) – a test we believe would be a potentially valuable resource for the early detection of cervical cancer.

Our involvement in cervical cancers came about thanks to two main driving factors. First of all, there is a significant need for clinical biomarkers for the development of novel immunotherapies, including checkpoint antibody-based and T-cell based therapies (both investigational therapies originally invented at NCI). Specifically, there is an immediate need to select patients based on their HPV genotype for experimental T-cell therapies. Second, we recognized the real potential of using circulating cell-free HPV DNA for patient monitoring; the high copy numbers of virus genome per cancer cell and the lack thereof in normal cells led us to consider the use of such an assay for treatment assessment and recurrence evaluation.

Read the full article now

Log in or register to read this article in full and gain access to The Pathologist’s entire content archive. It’s FREE and always will be!

Login

Or register now - it’s free and always will be!

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Pathologist magazine
Register

Or Login via Social Media

By clicking on any of the above social media links, you are agreeing to our Privacy Notice.

About the Authors

Liang Cao

Head of the Molecular Targets Core Lab in the Genetics Branch of the National Cancer Institute.


Zhigang Kang

A staff member in the Molecular Targets Core Lab in the Genetics Branch of the National Cancer Institute, Washington, DC, USA.

Register to The Pathologist

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Pathologist magazine

Register