Subscribe to Newsletter
Outside the Lab Genetics and epigenetics, Liquid biopsy, Technology and innovation, Screening and monitoring, Omics

The Gentle Fetal Genome

Invasive testing on a fetus is never desirable but can be unavoidable, which is why so many researchers are working on new and improved noninvasive prenatal tests (NIPT). One such research team is using inertial microfluidics within a lab-on-a-chip device to collect circulating fetal trophoblasts in maternal peripheral blood (1). Here, we speak with Marnie Winter, first author and research associate at the University of South Australia, to find out how the method differs from existing NIPT.

What is the origin of your work?

We have been working in the field of rare cell isolation for a number of years, with a particular interest in the isolation of circulating tumor cells, which poses a similar technical challenge to the isolation of circulating fetal cells from pregnant women’s blood. Recently, the field of prenatal screening has been revolutionized by the introduction of NIPT based on circulating cell-free fetal DNA. The technique has now gained broad clinical acceptance for the detection of a number of common genetic disorders; however, the technology is limited. By relying on fragments of DNA in the maternal blood stream, such tests are unable to provide information on the full range of potential genetic abnormalities.

Our experience in rare cell isolation and the great diagnostic potential of circulating fetal cells, which provide a whole intact genome, prompted us to refocus our efforts towards the isolation of those cells. From our perspective, that is a more elusive goal – but one that could have a huge impact on prenatal screening.

How far are you from having such an impact?

Our work thus far demonstrates the potential for inertial microfluidics to enrich circulating fetal cells. The isolation of these cells from blood has been attempted many times in the past, but is extremely challenging, so the field has stagnated. However, modern technologies (ours included) give us hope that we can reliably isolate these cells from all pregnancies. By combining our cell isolation (and the whole fetal genome contained within) with cutting-edge genomic technology, we can offer much more comprehensive prenatal screening. We believe that cell-based NIPT will form a part of the prenatal screening landscape in the near future.

How do you see your lab-on-a-chip technology fitting into the pathologist’s workflow?

In general, lab-on-a-chip concepts enable the manipulation of clinical specimens with very high accuracy and efficiency – and can often be completely automated. As a result, these technologies have a high potential to simplify and facilitate a pathologist’s workflow. In our specific case, inertial microfluidics is an extremely gentle, rapid, and cost-effective way to enrich rare cells. None of the standard enrichment approaches have been clinically useful in circulating fetal cells because to their extreme rarity and stringent sample requirements.

What’s next?

For the test to be clinically viable, we need fully integrated technology that requires minimal user input. We are currently working on creating technology to address this. At the same time, we are working with industry partners and geneticists to develop genetic analysis techniques specifically for low-number or single circulating fetal cells.

Our research is supported by the Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, and also by the National Health and Medical Research Council (Australia). There are a number of key collaborators for this project, including Majid Warkiani from the University of Technology Sydney, Tristan Hardy from SA Pathology, and Dierdre Zander-Fox from Monash IVF group.

Receive content, products, events as well as relevant industry updates from The Pathologist and its sponsors.
Stay up to date with our other newsletters and sponsors information, tailored specifically to the fields you are interested in

When you click “Subscribe” we will email you a link, which you must click to verify the email address above and activate your subscription. If you do not receive this email, please contact us at [email protected].
If you wish to unsubscribe, you can update your preferences at any point.

  1. M Winter at al., “Isolation of circulating fetal trophoblasts using inertial microfluidics for noninvasive prenatal testing”, Adv Mater Technol, 3 (2018).
About the Author
William Aryitey

My fascination with science, gaming, and writing led to my studying biology at university, while simultaneously working as an online games journalist. After university, I travelled across Europe, working on a novel and developing a game, before finding my way to Texere. As Associate Editor, I’m evolving my loves of science and writing, while continuing to pursue my passion for gaming and creative writing in a personal capacity.

Related Application Notes
Evaluation of cell-free fetal DNA to determine fetal RhD status

| Contributed by Revvity

Preventing Bias in scRNAseq Performed on Solid Tumors

| Contributed by Revvity

Enabling Efficient, Cost-effective Sequencing of the Human Whole Exome

| Contributed by Revvity

Related Product Profile
Diagnostics Genetics and epigenetics
QIAseq® Pan Cancer Multimodal cuts user interventions by 50%

| Contributed by QIAGEN

Most Popular
Register to The Pathologist

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:
  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Pathologist magazine