Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Pathologist
  • Explore Pathology

    Explore

    • Latest
    • Insights
    • Case Studies
    • Opinion & Personal Narratives
    • Research & Innovations
    • Product Profiles

    Featured Topics

    • Molecular Pathology
    • Infectious Disease
    • Digital Pathology

    Issues

    • Latest Issue
    • Archive
  • Subspecialties
    • Oncology
    • Histology
    • Cytology
    • Hematology
    • Endocrinology
    • Neurology
    • Microbiology & Immunology
    • Forensics
    • Pathologists' Assistants
  • Training & Education

    Career Development

    • Professional Development
    • Career Pathways
    • Workforce Trends

    Educational Resources

    • Guidelines & Recommendations
    • App Notes

    Events

    • Webinars
    • Live Events
  • Events
    • Live Events
    • Webinars
  • Profiles & Community

    People & Profiles

    • Power List
    • Voices in the Community
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
Subscribe
Subscribe

False

The Pathologist / Issues / 2017 / May / Beyond Stone-Age Sample Prep
Quality assurance and quality control Regulation and standards Clinical care

Beyond Stone-Age Sample Prep

Miniature detection technologies are evolving fast – but unevolved sample preparation is holding us back

05/19/2017 1 min read

Share

Miniature detection technologies have matured over the last decade thanks to significant investment from industry, funding agencies and investors. We can accurately identify target compounds using myriad technologies, including biosensors, spectrometers, PCR and sequencing. Highly abundant molecules, such as sodium and glucose, can now be monitored from a single blood drop using handheld systems, such as the i-STAT. Unfortunately, when the target is of low abundance or contaminated with other substances, we’re still struggling. Prevention of sepsis, food poisoning and water contamination, as well as the diagnosis and monitoring of cancer, all depend on the timely detection of rare targets – pathogens and circulating tumor cells. In these cases, we still rely on a series of cumbersome processes to convert the sample we gather into suitable fractions for analysis. Sample preparation currently relies on a suite of instruments for centrifugation, re-suspension, lysing, filtering and sorting; cue extensive labeling, wet chemistry and endless pipetting – all carried out manually so that reproducibility is too often dependent on experience...

Detection of one pathogen or tumor cell in a 10 mL sample is commonly required in clinical diagnostics (and in environmental monitoring, there can be as little as one target per liter). To obtain statistically valid results in these applications, we have to process large samples. It is unrealistic to expect the accurate and precise detection of a low abundant target when sampling only a few microliters of sample from a patient or water supply. Hence, preparation of large sample volumes is quite often a necessary step to enrich a target and enable analytical techniques. For example, lateral flow assays can only detect targets at a concentration of 100 nM. Even analytical technology with sensitivity of 1 attomolar would require at least one target per microliter of sample. Is there a solution to this “needle-in-the-haystack” problem? Well, transforming samples retrieved from a real-world scenario into ideal fractions for analysis is by no means a trivial task. But the reward is worth the effort, and a number of promising technologies for sample handling, particle and molecular sorting, and lysis are being developed. These include contained platforms such as centrifugal microfluidics and digital microfluidics; and label-free bioparticle sorting, such as dielectrophoresis, inertial microfluidics, deterministic lateral displacement, and acoustophoresis. There is much work to do before these next generation techniques can prepare a sample at the touch of a button. I foresee a combination of these techniques gradually enriching a target in a decreasing sample volume over time. Multi-scale fractionation of sample components will allow us to tailor the fraction depending on the analysis to be performed. Importantly, we will also need standards that enable the integration of modules developed by different companies; for example, standardizing the connector for transfer of a given sample type.

Improving throughput, efficiency and reproducibility of a technology, and its integration with others, are not incremental advances. They are enablers of a practical platform that can have tremendous impact on clinical diagnostics, as well as disease diagnostics in rural, space, battlefield and wilderness scenarios. Investors and funding agencies first need to understand the challenge of sample preparation – and then do more to reward our efforts.

Newsletters

Receive the latest pathology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

R-Tracker: The First of Its Kind
Quality assurance and quality control
R-Tracker: The First of Its Kind

December 29, 2021

1 min read

Milestone is committed to enhancing patient safety with a new disruptive technology

The Big Freeze
Quality assurance and quality control
The Big Freeze

February 7, 2022

1 min read

Cryobioprinting could maximize the shelf life of bioprinted 3D tissues

Biospecimen Access For Biotechs
Quality assurance and quality control
Biospecimen Access For Biotechs

February 14, 2022

1 min read

Quality, provenance, and “taking pot luck”

Questions of Quality
Quality assurance and quality control
Questions of Quality

October 21, 2016

1 min read

The importance of quality is broadly accepted – witness the plethora of standards and guidelines – but do they lead to effective implementation?

False

The Pathologist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.