Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Pathologist
  • Explore Pathology

    Explore

    • Latest
    • Insights
    • Case Studies
    • Opinion & Personal Narratives
    • Research & Innovations
    • Product Profiles

    Featured Topics

    • Molecular Pathology
    • Infectious Disease
    • Digital Pathology

    Issues

    • Latest Issue
    • Archive
  • Subspecialties
    • Oncology
    • Histology
    • Cytology
    • Hematology
    • Endocrinology
    • Neurology
    • Microbiology & Immunology
    • Forensics
    • Pathologists' Assistants
  • Training & Education

    Career Development

    • Professional Development
    • Career Pathways
    • Workforce Trends

    Educational Resources

    • Guidelines & Recommendations
    • App Notes

    Events

    • Webinars
    • Live Events
  • Events
    • Live Events
    • Webinars
  • Profiles & Community

    People & Profiles

    • Power List
    • Voices in the Community
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
    • Pathology Captures
Subscribe
Subscribe

False

The Pathologist / Issues / 2023 / Jan / Feeling the Selective Pressure
Genetics and epigenetics Molecular Pathology

Feeling the Selective Pressure

Key genetic differences may have determined who survived the Black Death pandemic – and how our immune system respond to diseases today

By Liv Gaskill 01/13/2023 News 2 min read

Share

Infectious diseases have placed intense selective pressure on the human and animal population throughout history, with many of these involving immune response genes. The problem, however, lies with linking cause and effect – which pathogens caused specific adaptations?

In the mid-14th century, the Black Death wiped out up to 50 percent of the global population – cementing its place as one of the deadliest pandemics recorded in modern history. In an effort to understand whether Yersinia pestis – the bacterium responsible for the second plague pandemic – triggered a case of natural selection, researchers have analyzed the DNA of victims and survivors who lived in Denmark or London before, during, or after the Black Death (1). By their reasoning, variants associated with susceptibility or protection should display opposite frequency patterns across the sampled timepoints; variants conferring increased susceptibility should be high in frequency in individuals who died during the Black Death then decrease in post-pandemic survivors or descendents, whereas variants associated with protection should rise after the Black Death.

By tracking genetic variants that became more common throughout the pandemic, they found key genetic differences associated with plague protection or susceptibility. In particular, changes in  ERAP2 allele frequencies were implicated; people with two identical copies of the protective ERAP2 allele were about 40 percent more likely to survive the pandemic than individuals homozygous for the deleterious variant. This allele is linked with increased ERAP2 expression and production of the canonical, full-length protein ERAP2, which the researchers suggest is associated with an increase in Yersinia-derived antigens to CD8+ T cells. They also found that macrophages from individuals with the protective allele yield a unique cytokine response to infection and better limit replication in vitro.

After the Black Death, plague outbreaks continued to occur in waves up until the mid-19th century, but these often wreaked less havoc than their predecessors. Why? Possible explanations span changing health, sanitation, and cultural practices, but it could also be that, because more people with protective variants survived the Black Death, their descendents will have inherited the survival advantage and been protected against future waves of the bubonic plague.

Fast-forward to modern day, and the research demonstrates how historical natural selection can impact current susceptibility to chronic inflammatory and autoimmune diseases. When stimulated  with a range of pathogens, ERAP2 was transcriptionally responsive and demonstrated its key role in immune response regulation – suggesting that the selective pressure from Y. pestis likely impacts immune response to other pathogens or diseases. The paper cites that the advantageous ERAP2 variant against Y. pestis is actually a known risk factor for Crohn’s disease and some communicable diseases. Perhaps the ERAP2 variant protected our ancestors through the Black Plague, but this may have come at a trade-off for immune disorders in the present day – or “a long-term signature of balancing selection,” as the researchers state.

Newsletters

Receive the latest pathologist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

References

  1. J Klunk et al., “Evolution of immune genes is associated with the Black Death,” Nature, 611, 312 (2022). PMID: 36261521.

About the Author(s)

Liv Gaskill

During my undergraduate degree in psychology and Master’s in neuroimaging for clinical and cognitive neuroscience, I realized the tasks my classmates found tedious – writing essays, editing, proofreading – were the ones that gave me the greatest satisfaction. I quickly gathered that rambling on about science in the bar wasn’t exactly riveting for my non-scientist friends, so my thoughts turned to a career in science writing. At Texere, I get to craft science into stories, interact with international experts, and engage with readers who love science just as much as I do.

More Articles by Liv Gaskill

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Breathing New Life into Diagnostics
Genetics and epigenetics
Breathing New Life into Diagnostics

January 22, 2024

6 min read

Jonathan Edgeworth on how metagenomics could transform testing for respiratory infections

Molecular Spectacular
Genetics and epigenetics
Molecular Spectacular

January 8, 2024

1 min read

A look at last year’s most interesting molecular pathology stories

Redefining Diagnostic Reference Standards
Genetics and epigenetics
Redefining Diagnostic Reference Standards

January 3, 2022

1 min read

Find out what Horizon Discovery’s diagnostic reference standards can do for your workflow

Defining the Next Generation of NGS
Genetics and epigenetics
Defining the Next Generation of NGS

December 31, 2021

1 min read

Overcoming challenges of the typical NGS workflow with the Ion Torrent™ Genexus™ System

False

The Pathologist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.