Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Pathologist
  • Explore Pathology

    Explore

    • Latest
    • Insights
    • Case Studies
    • Opinion & Personal Narratives
    • Research & Innovations
    • Product Profiles

    Featured Topics

    • Molecular Pathology
    • Infectious Disease
    • Digital Pathology

    Issues

    • Latest Issue
    • Archive
  • Subspecialties
    • Oncology
    • Histology
    • Cytology
    • Hematology
    • Endocrinology
    • Neurology
    • Microbiology & Immunology
    • Forensics
    • Pathologists' Assistants
  • Training & Education

    Career Development

    • Professional Development
    • Career Pathways
    • Workforce Trends

    Educational Resources

    • Guidelines & Recommendations
    • App Notes

    Events

    • Webinars
    • Live Events
  • Events
    • Live Events
    • Webinars
  • Profiles & Community

    People & Profiles

    • Power List
    • Voices in the Community
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
Subscribe
Subscribe

False

The Pathologist / Issues / 2022 / Feb / When Pathology Goes 3D
Oncology Digital and computational pathology Microscopy and imaging Oncology

When Pathology Goes 3D

Stratifying cancers with non-destructive 3D pathology

02/02/2022 Quick Read (pre 2022) 1 min read

Share

This image shows a 3D pathology dataset of a prostate biopsy stained with a fluorescent analogue of H&E (left). The researchers perform deep learning-based image translation to convert the H&E dataset into a synthetic dataset that looks like it has been immunolabeled to highlight a cytokeratin biomarker (brown) that is expressed by the epithelial cells in all prostate glands. In turn, this synthetically immunolabeled dataset allows for relatively straightforward and accurate 3D segmentation of the prostate gland epithelium (yellow) and lumen spaces (red). This also allows the researchers to extract the “skeleton” of the branching-tree gland network (magenta). Quantitative features derived from these segmented 3D structures are used to train a machine classifier to stratify between aggressive (recurrent) versus indolent (non-recurrent) cancer.

Jonathan Liu, a professor at the University of Washington and senior investigator on this project (1), remarks that “this is the first of hopefully many studies to come that will demonstrate the value of 3D pathology versus conventional 2D pathology for guiding critical treatment decisions for cancer patients. We are combining the best of modern optical technologies, tissue-clearing methods, and big data machine learning tools to transform the field of pathology that is so foundational to diagnostic medicine.”

Click here to see a video summary of their work.

Newsletters

Receive the latest pathology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

References

  1. W Xie et al., Cancer Res, 82, 334 (2022). PMID: 34853071.

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Global Referral
Digital and computational pathology
Global Referral

January 12, 2024

10 min read

How digital pathology is transforming the delivery of remote second opinions

Cracking Colon Cancer
Digital and computational pathology
Cracking Colon Cancer

January 25, 2024

1 min read

How a new clinically approved AI-based tool enables rapid microsatellite instability detection

The (Pathology) IT Crowd?
Digital and computational pathology
The (Pathology) IT Crowd?

December 30, 2021

5 min read

The pathologist’s guide to IT considerations for digitization

Defining the Next Generation of NGS
Digital and computational pathology
Defining the Next Generation of NGS

December 31, 2021

1 min read

Overcoming challenges of the typical NGS workflow with the Ion Torrent™ Genexus™ System

False

The Pathologist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.