Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Pathologist
  • Explore Pathology

    Explore

    • Latest
    • Insights
    • Case Studies
    • Opinion & Personal Narratives
    • Research & Innovations
    • Product Profiles

    Featured Topics

    • Molecular Pathology
    • Infectious Disease
    • Digital Pathology

    Issues

    • Latest Issue
    • Archive
  • Subspecialties
    • Oncology
    • Histology
    • Cytology
    • Hematology
    • Endocrinology
    • Neurology
    • Microbiology & Immunology
    • Forensics
    • Pathologists' Assistants
  • Training & Education

    Career Development

    • Professional Development
    • Career Pathways
    • Workforce Trends

    Educational Resources

    • Guidelines & Recommendations
    • App Notes

    Events

    • Webinars
    • Live Events
  • Events
    • Live Events
    • Webinars
  • Profiles & Community

    People & Profiles

    • Power List
    • Voices in the Community
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
Subscribe
Subscribe

False

The Pathologist / Issues / 2021 / Mar / The Proof is in the (AI) Training
Digital and computational pathology Quality assurance and quality control Software and hardware Digital Pathology

The Proof is in the (AI) Training

Ibex Medical Analytics cofounder Chaim Linhart shares best practices for training artificial intelligence algorithms for cancer diagnosis

By Chaim Linhart 03/09/2021 Quick Read (pre 2022) 1 min read

Share

Congratulations! You’ve just hired a new pathology resident – but, before teaching her how to analyze a tissue biopsy, you may wish to assess which approach will be better:

  1. Ask the trainee to diagnose slides, telling her whether a slide is cancerous or benign without explaining what a tumor looks like or its key features, or 
  2. Jointly analyze slides that include all significant features and morphologies, explaining in detail what nerves and blood vessels look like, how to identify atypical ductal hyperplasia versus ductal carcinoma in situ or invasive ductal carcinoma versus invasive lobular carcinoma in breast biopsies or look for different Gleason grades, high-grade prostatic intraepithelial neoplasia, and perineural invasion in prostate biopsies. 

Few would argue that the first approach is optimal – especially given that residents will need to complete full pathology reports and not just identify cancer. Moreover, to accurately detect all cancer types, they also need to be trained on specific – possibly rare – cases that contain structures and cells similar to cancer. With today’s tidal wave of digital pathology, more and more companies and researchers are developing artificial intelligence (AI)-based tools to improve cancer diagnostics. Like any assistant, AI must be trained – but how? Should algorithm developers train it based only on slide-level information from the pathology report (e.g., cancerous or benign)? Or should they dive deep with expert pathologists who rigorously annotate features prior to training and then highlight the model’s incorrect predictions?

Again, the first option is tempting – it is less time-consuming, easier to access the necessary data, and requires fewer resources. Unfortunately, it results in “narrow AI” – an algorithm that can handle only one task, such as cancer detection or grading, often with limited accuracy. The second, albeit more meticulous and requiring more effort, results in “strong AI.” Strong AI is far more comprehensive and explainable and can support pathologists across a wider range of tasks including finding and grading cancer, identifying subtypes, and detecting other clinical features. AI offers great promise to pathology and laboratory medicine, improving the quality of cancer diagnostics while enabling more efficient workflows. The secret to developing strong AI that becomes the pathologist’s trusted advisor lies in the quality of the training – and, like your next resident, pathologists make the best teachers.

www.ibex-ai.com

Newsletters

Receive the latest pathology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

About the Author(s)

Chaim Linhart

Chief Technology Officer and Co-Founder of Ibex Medical Analytics, Tel Aviv, Israel.

More Articles by Chaim Linhart

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Global Referral
Digital and computational pathology
Global Referral

January 12, 2024

10 min read

How digital pathology is transforming the delivery of remote second opinions

Cracking Colon Cancer
Digital and computational pathology
Cracking Colon Cancer

January 25, 2024

1 min read

How a new clinically approved AI-based tool enables rapid microsatellite instability detection

The (Pathology) IT Crowd?
Digital and computational pathology
The (Pathology) IT Crowd?

December 30, 2021

5 min read

The pathologist’s guide to IT considerations for digitization

Defining the Next Generation of NGS
Digital and computational pathology
Defining the Next Generation of NGS

December 31, 2021

1 min read

Overcoming challenges of the typical NGS workflow with the Ion Torrent™ Genexus™ System

False

The Pathologist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.