A new algorithm has been developed to help physicians make differential diagnoses (1). Current methods use Bayesian inference to determine the most likely diagnosis; however, Gerald Loeb, the engineer of the new tool, says, “What has been missing so far – and is provided by the algorithm – is a way to decide which clinical data to obtain at each point in the workup.”
He continues, “It prioritizes diagnostic options based on their likelihood to advance the process toward a definitive diagnosis vs. their cost in dollars, delay, and possible adverse events.” How? “It looks at the cumulative electronic health records (EHRs) of all patients in the database, including all tests that were run on those patients and their final diagnoses.”
Though the model assesses EHRs, pathologists have a vital role to play in the wider adoption of the model. Loeb believes it will “require substantial input from pathologists and laboratory medicine specialists to standardize the reporting of test results – particularly for newer modalities, such as genomic and antibody testing.”
References
GE Loeb, J Biomed Inform, [Online ahead of print] (2021). PMID: 33711542.