Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Pathologist
  • Explore Pathology

    Explore

    • Latest
    • Insights
    • Case Studies
    • Opinion & Personal Narratives
    • Research & Innovations
    • Product Profiles

    Featured Topics

    • Molecular Pathology
    • Infectious Disease
    • Digital Pathology

    Issues

    • Latest Issue
    • Archive
  • Subspecialties
    • Oncology
    • Histology
    • Cytology
    • Hematology
    • Endocrinology
    • Neurology
    • Microbiology & Immunology
    • Forensics
    • Pathologists' Assistants
  • Training & Education

    Career Development

    • Professional Development
    • Career Pathways
    • Workforce Trends

    Educational Resources

    • Guidelines & Recommendations
    • App Notes

    Events

    • Webinars
    • Live Events
  • Events
    • Live Events
    • Webinars
  • Profiles & Community

    People & Profiles

    • Power List
    • Voices in the Community
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
Subscribe
Subscribe

False

The Pathologist / Issues / 2020 / May / 3D Tissue Staining Visualizes Whole Organs
Histology Microscopy and imaging Histology Technology and innovation Neurology Research and Innovations

3D Tissue Staining Visualizes Whole Organs

New staining technique opens the door to 3D histopathology

By Luke Turner 05/25/2020 Quick Read (pre 2022) 1 min read

Share

3D tissue imaging holds great promise – but although tissue clearing can produce stunning images, it has little scientific value on its own. To study specific tissue and cell types, a versatile staining and labeling method that works across a range of staining agents and antibodies is needed. A team from Japan have now developed exactly that, using their technique, CUBIC-HistoVIsion, to stain and image not just tissues, but even an entire mouse brain (1). Etsuo Susaki from the RIKEN Center for Biosystems Dynamics Research explains more.

By carrying out physical and chemical analyses, we discovered that the physicochemical properties of biological tissue can be recreated in electrolyte gel. Toyoichi Tanaka first described biological tissue as a gel at the Massachusetts Institute of Technology in the 1980s – and we were excited to rediscover his work.

We selected an artificial gel to mimic biological tissue and experimentally evaluated various staining conditions to establish a fine-tuned 3D staining method called CUBIC-HistoVIsion. Our bottom-up design approach works with over 30 different antibodies and nuclear staining agents.

Immunostaining is a powerful way to detect cell types, protein expressions, protein modifications, and protein localization in tissues. 3D imaging can reveal the precise location of these signals with the same level of detail as transcriptomics. The technique can be used to identify new cell states or cellular connections or to collect information on cell types and their positions in the body. It can also be applied to projects such as the Human Cell Atlas or the Human Protein Atlas to assist with mapping locations and relationships.

We have already used our method to compare whole-organ anatomical features among species – including imaging a mouse brain, half a marmoset brain, and a square centimeter of human brain tissue. Our previous work, in which we applied this technique to human lung and lymph node tissues to detect malignancies, has underlined the potential of 3D histopathology (2) – and further research will improve the diagnostic accuracy and objectivity of 3D clinical pathology examination in the future.

Newsletters

Receive the latest pathology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

References

  1. EA Susaki et al., Nat Commun, 11, 1982 (2020). PMID: 32341345.
  2. S Nojima et al., Sci Rep, 7, 9269 (2017). PMID: 28839164.

About the Author(s)

Luke Turner

While completing my undergraduate degree in Biology, I soon discovered that my passion and strength was for writing about science rather than working in the lab. My master’s degree in Science Communication allowed me to develop my science writing skills and I was lucky enough to come to Texere Publishing straight from University. Here I am given the opportunity to write about cutting edge research and engage with leading scientists, while also being part of a fantastic team!

More Articles by Luke Turner

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Intense Intestines
Microscopy and imaging
Intense Intestines

January 19, 2024

1 min read

Some powerful fluorescent microscopy in this Image of the Month…

Context Matters in Cancer Biology
Microscopy and imaging
Context Matters in Cancer Biology

December 27, 2021

1 min read

Akoya is leading the way with spatial phenotypic signatures – a novel class of biomarkers for predicting response to immunotherapy

When Pathology Goes 3D
Microscopy and imaging
When Pathology Goes 3D

February 2, 2022

1 min read

Stratifying cancers with non-destructive 3D pathology

Sacrificing Safety for Speed?
Microscopy and imaging
Sacrificing Safety for Speed?

February 4, 2022

3 min read

Wide adaptation of antigen testing could increase the risk of exposure to infectious SARS-CoV-2 samples

False

The Pathologist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.