Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Pathologist
  • Explore Pathology

    Explore

    • Latest
    • Insights
    • Case Studies
    • Opinion & Personal Narratives
    • Research & Innovations
    • Product Profiles

    Featured Topics

    • Molecular Pathology
    • Infectious Disease
    • Digital Pathology

    Issues

    • Latest Issue
    • Archive
  • Subspecialties
    • Oncology
    • Histology
    • Cytology
    • Hematology
    • Endocrinology
    • Neurology
    • Microbiology & Immunology
    • Forensics
    • Pathologists' Assistants
  • Training & Education

    Career Development

    • Professional Development
    • Career Pathways
    • Workforce Trends

    Educational Resources

    • Guidelines & Recommendations
    • App Notes

    Events

    • Webinars
    • Live Events
  • Events
    • Live Events
    • Webinars
  • Profiles & Community

    People & Profiles

    • Power List
    • Voices in the Community
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
Subscribe
Subscribe

False

The Pathologist / Issues / 2019 / Jul / Now Streaming: Spectral Simplification
Analytical science Biochemistry and molecular biology Digital and computational pathology Molecular Pathology

Now Streaming: Spectral Simplification

A preference algorithm originally developed for Netflix could speed up Raman imaging, readying the tool for potential clinical use

By Jonathan James 07/29/2019 1 min read

Share

Raman imaging has already shown promise as a diagnostic tool, both to identify cancer cells in tissue samples and to detect disease biomarkers. But slow imaging and the production of unwieldy amounts of data have thus far hampered its use in clinical settings, where speed and efficiency are essential. In an effort to solve the problem, a team of researchers at École Normale Supérieure in Paris has turned to a most unlikely source: Netflix.

Repurposing an algorithm originally developed in 2009 as part of a competition to develop more accurate movie preference software for the streaming giant (1), the group hoped to make use of the substantial predictive power to “fill in the gaps” in spectroscopic images. By predicting the make-up of unimaged sections of samples, the analysis time and volume of spectral data necessary to determine a samples chemical composition can be reduced.

“We combined compressive imaging with fast computer algorithms that provide the kind of images clinicians use to diagnose patients, but rapidly and without laborious manual postprocessing,” said team leader Hilton de Aguiar (2).

The team also tackled cost by replacing the camera normally associated with Raman imaging with a spatial light modulator. “The device we used is orders of magnitude less expensive and faster than other options on the market,” says Aguiar. To test the camera’s ability to distinguish high levels of chemical complexity, the team prepared samples of brain tissue and single cells, and were rewarded with their newfound ability to acquire spectral data – compressed by 64 times – in tens of seconds as opposed to the minutes or hours taken by other approaches (3).

If further testing on other biological samples proves successful, clinicians may one day gain access to a rapid new diagnostic tool, which – much to the relief of patients everywhere – will presumably not require a monthly subscription.

The researchers demonstrated their new methodology by using a Raman microscope to obtain spectroscopy images from opaque brain tissue. Scale bar: 20 microns. Credit: Hilton De Aguiar, École Normale Supérieure

Newsletters

Receive the latest pathology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

About the Author(s)

Jonathan James

As an assistant editor for The Translational Scientist, I can combine two of my passions; translational science research and science communication. Having thrown myself into various editing and other science communication gigs whilst at University I came to realise the importance of good quality content that delivers in an exciting and engaging way.

More Articles by Jonathan James

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Opening a Window into Brain Trauma
Analytical science
Opening a Window into Brain Trauma

January 18, 2024

4 min read

Raman spectroscopy shows promise as the first point-of-care diagnostic device for TBI

Could ≠ Should
Analytical science
Could ≠ Should

January 20, 2022

1 min read

The need to prevent the ordering of unnecessary tests

Diamonds Are a Diagnostician’s Best Friend
Analytical science
Diamonds Are a Diagnostician’s Best Friend

February 8, 2022

1 min read

A diagnostic sensor for rapid, cost-effective, and accurate detection of SARS-CoV-2

Hunting the Unknown
Analytical science
Hunting the Unknown

February 22, 2022

1 min read

When it comes to human health, we cannot ignore unknown molecules simply because they present analytical challenges

False

The Pathologist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.