Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Pathologist
  • Explore Pathology

    Explore

    • Latest
    • Insights
    • Case Studies
    • Opinion & Personal Narratives
    • Research & Innovations
    • Product Profiles

    Featured Topics

    • Molecular Pathology
    • Infectious Disease
    • Digital Pathology

    Issues

    • Latest Issue
    • Archive
  • Subspecialties
    • Oncology
    • Histology
    • Cytology
    • Hematology
    • Endocrinology
    • Neurology
    • Microbiology & Immunology
    • Forensics
    • Pathologists' Assistants
  • Training & Education

    Career Development

    • Professional Development
    • Career Pathways
    • Workforce Trends

    Educational Resources

    • Guidelines & Recommendations
    • App Notes

    Events

    • Webinars
    • Live Events
  • Events
    • Live Events
    • Webinars
  • Profiles & Community

    People & Profiles

    • Power List
    • Voices in the Community
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
Subscribe
Subscribe

False

The Pathologist / Issues / 2019 / Aug / IVF ID
Biochemistry and molecular biology Digital and computational pathology Technology and innovation Microscopy and imaging Molecular Pathology

IVF ID

Artificial intelligence holds the key to improving embryo selection for in vitro fertilization.

By Jonathan James 08/02/2019 1 min read

Share

In vitro fertilization (IVF) technology has made enormous strides in recent decades, resulting in millions of successful pregnancies. Nevertheless, disparity in visual morphology assessment results between embryologists has raised serious questions about the efficacy of embryo selection (1). Attempting to solve this problem, Iman Hajirasouliha (Assistant Professor of Computational Biology) and his team at Cornell University the Englander Institute for Precision Medicine at Weill Cornell Medicine have developed a new tool – the aptly-named STORK – which is capable of driving robust assessment and selection of human blastocysts (2).

“Often, to overcome uncertainties in embryo quality, many more embryo’s than required are implanted into the patient,” says Hajirasouliha. “Often, this leads to undesired multiple pregnancies and serious complications.” Convinced there must be a more efficient way to screen for healthy, viable embryos, the team trained a deep neural network to select the best embryo’s using time-stamped images of embryos from a large IVF center.  “Our network – STORK – is capable of predicting blastocyst quality with over 98 percent accuracy,” says Hajirasouliha. “It also generalizes well to images from other centers. And it outperforms individual embryologists in similar assessments.”

STORK certainly builds on the groundwork of earlier studies - for example, (3), but what makes it unique, according to Hajirasouliha, is its mathematical complexity. “From an algorithmic point of view, we really had to study and evaluate a wide range of different deep neural network architectures before we identified a suitable methodology.”

Despite its complexity and success to date, STORK has the potential to deliver more (pun intended). “We need to train our AI method on the whole series of time-lapse data and the development of embryos from day 0 to day 5, instead of single images,” says Hajirasouliha. “We also hope to integrate several different clinical factors into our model – a process that we’ll perform in tandem with further work to improve accuracy when dealing with data from different clinics.”

Newsletters

Receive the latest pathology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

References

  1. CL Curchoe & CL Bormann., “Artificial Intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018,” J Assist Reprod Genet, 36, 591-600 (2019). PMID: 20690654.
  2. P Khosravi et al., “Deep learning enables robust assessment and selection of human blastocyst after in vitro fertilization,” npj Digital Medicine, 2,
  3. B Ting et al., “Recent Advances of Deep Learning in Bioinformatics and Computational Biology,” Front Genet, 10, 214-220 (2019). PMID: 30972100.

About the Author(s)

Jonathan James

As an assistant editor for The Translational Scientist, I can combine two of my passions; translational science research and science communication. Having thrown myself into various editing and other science communication gigs whilst at University I came to realise the importance of good quality content that delivers in an exciting and engaging way.

More Articles by Jonathan James

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Turning Tides
Biochemistry and molecular biology
Turning Tides

January 9, 2024

3 min read

A new study shows evidence for sustained human-to-human transmission of mpox since 2016

Molecular Spectacular
Biochemistry and molecular biology
Molecular Spectacular

January 8, 2024

1 min read

A look at last year’s most interesting molecular pathology stories

qPCR Infectious Disease Detective
Biochemistry and molecular biology
qPCR: Infectious Disease Detective

January 4, 2024

3 min read

How quantitative polymerase chain reaction really hits the mark in epidemic control and ID detection

Case of the Month
Biochemistry and molecular biology
Case of the Month

January 11, 2022

1 min read

False

The Pathologist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.