Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Pathologist
  • Explore Pathology

    Explore

    • Latest
    • Insights
    • Case Studies
    • Opinion & Personal Narratives
    • Research & Innovations
    • Product Profiles

    Featured Topics

    • Molecular Pathology
    • Infectious Disease
    • Digital Pathology

    Issues

    • Latest Issue
    • Archive
  • Subspecialties
    • Oncology
    • Histology
    • Cytology
    • Hematology
    • Endocrinology
    • Neurology
    • Microbiology & Immunology
    • Forensics
    • Pathologists' Assistants
  • Training & Education

    Career Development

    • Professional Development
    • Career Pathways
    • Workforce Trends

    Educational Resources

    • Guidelines & Recommendations
    • App Notes

    Events

    • Webinars
    • Live Events
  • Events
    • Live Events
    • Webinars
  • Profiles & Community

    People & Profiles

    • Power List
    • Voices in the Community
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
Subscribe
Subscribe

False

The Pathologist / Issues / 2016 / May / Defining Boundaries
Histology Microscopy and imaging Histology Oncology Neurology

Defining Boundaries

Third harmonic generation microscopy could allow surgeons to spot and remove tumor tissue in real-time

By Michael Schubert 05/19/2016 1 min read

Share

When a surgeon operates on a brain tumor, it can be medically challenging to tell whether or not they’ve managed to remove all of the necessary tissue. Correctly identifying the margins of the tumor can be further complicated if there is damage from previous surgery or other anti-cancer therapies, and even the best of eyes will fail to detect a few microscopic cells left behind. That is, of course, where the pathologist comes in. Identifying the presence of remaining tumor tissue is a crucial element of the treatment process, but it’s a step that generally takes place once surgery is complete, which is often not ideal.

Figure 1. Imaging of a low-grade glioma sample using THG microscopy (left) and conventional hematoxylin and eosin staining (right). Credit: N.V. Kuzmin et al., VU University Amsterdam, The Netherlands.

Clearly, a solution that supports the identification of tumor tissue during surgery would help avoid unnecessary further treatment and distress to the patient, and would save time and presumably costs. That’s what researchers from the Vrije Universiteit Amsterdam thought when they devised a near-real-time, label-free method of detecting tumor tissue in the brain (1). Third harmonic generation microscopy (THG) involves firing photons of a given wavelength into tissue; when three photons simultaneously interact with the tissue, the reaction produces a single photon at one-third the wavelength (and triple the frequency), which is picked up by a detector to generate an image of the tissue (see Figure 1). Because the technique is so clear – allowing visualization of subcellular features – and so fast – ranging from under one second to five minutes, depending on image size and detail – it’s possible to apply it during surgery, allowing neurosurgeons to assess tumor boundaries while there’s still time to act. “The special thing about our images is that we showed they contain so much information,” said principal investigator Marloes Groot (2). “When I showed these images to the pathologists that we work with, they were amazed.” Although THG isn’t a new technique, this is the first time it has been used on human brain tumor samples – and the outlook is promising. What’s next for Groot and her colleagues? Now that they’ve established that THG works on tumor samples, they’d like to construct a tabletop THG device for placement in an operating room, so that it can provide immediate feedback to surgeons during complicated operations. They’re also working on a new device to overcome one of THG’s current limitations: the fact that its laser pulses can only penetrate about 100 μm into a given tissue. They hope to develop a THG-based bioptic needle to deliver photons below the tissue surface for greater reach, potentially expanding the technique’s usefulness. Such a device might even be able to yield diagnostic information prior to or instead of surgery – not just in brain tumors, but for a wide variety of histopathological applications.

Newsletters

Receive the latest pathology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

References

  1. NV Kuzmin et al., “Third harmonic generation imaging for fast, label-free pathology of human brain tumors”, Biomed Opt Express, 7, 1889–1904 (2016). MedicalXpress, “New method allows surgeons to identify brain tumors in real time”, (2016). Available at: http://bit.ly/1R3BFAe. Accessed May 16, 2016.

About the Author(s)

Michael Schubert

While obtaining degrees in biology from the University of Alberta and biochemistry from Penn State College of Medicine, I worked as a freelance science and medical writer. I was able to hone my skills in research, presentation and scientific writing by assembling grants and journal articles, speaking at international conferences, and consulting on topics ranging from medical education to comic book science. As much as I’ve enjoyed designing new bacteria and plausible superheroes, though, I’m more pleased than ever to be at Texere, using my writing and editing skills to create great content for a professional audience.

More Articles by Michael Schubert

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Intense Intestines
Microscopy and imaging
Intense Intestines

January 19, 2024

1 min read

Some powerful fluorescent microscopy in this Image of the Month…

Context Matters in Cancer Biology
Microscopy and imaging
Context Matters in Cancer Biology

December 27, 2021

1 min read

Akoya is leading the way with spatial phenotypic signatures – a novel class of biomarkers for predicting response to immunotherapy

When Pathology Goes 3D
Microscopy and imaging
When Pathology Goes 3D

February 2, 2022

1 min read

Stratifying cancers with non-destructive 3D pathology

Sacrificing Safety for Speed?
Microscopy and imaging
Sacrificing Safety for Speed?

February 4, 2022

3 min read

Wide adaptation of antigen testing could increase the risk of exposure to infectious SARS-CoV-2 samples

False

The Pathologist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.