Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Pathologist
  • Explore Pathology

    Explore

    • Latest
    • Insights
    • Case Studies
    • Opinion & Personal Narratives
    • Research & Innovations
    • Product Profiles

    Featured Topics

    • Molecular Pathology
    • Infectious Disease
    • Digital Pathology

    Issues

    • Latest Issue
    • Archive
  • Subspecialties
    • Oncology
    • Histology
    • Cytology
    • Hematology
    • Endocrinology
    • Neurology
    • Microbiology & Immunology
    • Forensics
    • Pathologists' Assistants
  • Training & Education

    Career Development

    • Professional Development
    • Career Pathways
    • Workforce Trends

    Educational Resources

    • Guidelines & Recommendations
    • App Notes

    Events

    • Webinars
    • Live Events
  • Events
    • Live Events
    • Webinars
  • Profiles & Community

    People & Profiles

    • Power List
    • Voices in the Community
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
Subscribe
Subscribe

False

The Pathologist / Issues / 2015 / Dec / Driving Discovery
Oncology Oncology Omics Bioinformatics

Driving Discovery

A big data approach to cancer driver genes yields insights into how these mutations affect protein interaction

By Roisin McGuigan 12/18/2015 1 min read

Share

A big data approach to cancer driver genes yields insights into how these mutations affect protein interaction

A collaborative effort between researchers in Europe and the US has resulted in the combination of two publicly available “omics” databases, to create a catalog of cancer drivers. The study has discovered over 70 new candidate cancer driver genes (1), and could help to explain how the same affected gene can lead to different outcomes or therapy responses in patients. The computational program, called E-driver, uses tumor data from ~6,000 patients from the Cancer Genome Atlas (TCGA), and more than 18,000 three-dimensional protein structures from the Protein Data Bank. An algorithm then analyzes the information to see if structural alterations of protein-protein interaction (PPI) interfaces are enriched in cancer mutations, therefore identifying candidate driver genes.

The motivation behind the study? It was based on the theory that, as genes can have a variety of functions, information on the structures, pathways, and protein complexes involved in disease would give insight into how mutations in different genetic regions may produce different characteristics in the resulting cancer. “I was surprised that almost all existing tools for the analysis of cancer mutations are not using available structural information on proteins, which happen to be my main field of interest,” says co-author Adam Godzik. “Insights can be gained from even very rudimentary structural analysis, and we set out to do this on a large scale”.

As well as identifying possible new cancer drivers, the study has given further insight into this area of oncology, adds Godzik. “We have learned two things: mutations in different regions of a gene can have different, sometimes opposite effects on cancer and treatment outcomes. And the growing list of cancer driver genes is slowly eroding the current model of driver vs. passenger mutations. It is clear now that as well as a small number of major drivers, there are a lot of genes that play a role of ‘enablers’ or ‘mini-drivers’, which when mutated, could provide an important advantage to a growing tumor, but may not be able to start cancer by themselves”, he says. Godzik admits that more analysis is needed to better understand the entire landscape of molecular events in cancer in order to identify optimal treatments and predict patient outcomes. However, at this point it remains unclear if these newly-discovered drivers are likely to become targets for therapy, as many are relatively rare.

Newsletters

Receive the latest pathology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

References

  1. E Porta-Pardo et al., “A pan-cancer catalogue of cancer driver protein interaction interfaces”, PloS Comput Biol, 11, e1004518 (2015). PMID: 26485003.

About the Author(s)

Roisin McGuigan

I have an extensive academic background in the life sciences, having studied forensic biology and human medical genetics in my time at Strathclyde and Glasgow Universities. My research, data presentation and bioinformatics skills plus my ‘wet lab’ experience have been a superb grounding for my role as an Associate Editor at Texere Publishing. The job allows me to utilize my hard-learned academic skills and experience in my current position within an exciting and contemporary publishing company.

More Articles by Roisin McGuigan

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

False

The Pathologist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.