Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Pathologist
  • Explore Pathology

    Explore

    • Latest
    • Insights
    • Case Studies
    • Opinion & Personal Narratives
    • Research & Innovations
    • Product Profiles

    Featured Topics

    • Molecular Pathology
    • Infectious Disease
    • Digital Pathology

    Issues

    • Latest Issue
    • Archive
  • Subspecialties
    • Oncology
    • Histology
    • Cytology
    • Hematology
    • Endocrinology
    • Neurology
    • Microbiology & Immunology
    • Forensics
    • Pathologists' Assistants
  • Training & Education

    Career Development

    • Professional Development
    • Career Pathways
    • Workforce Trends

    Educational Resources

    • Guidelines & Recommendations
    • App Notes

    Events

    • Webinars
    • Live Events
  • Events
    • Live Events
    • Webinars
  • Profiles & Community

    People & Profiles

    • Power List
    • Voices in the Community
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
Subscribe
Subscribe

False

The Pathologist / Issues / 2018 / Sep / Decoding Autism on Chromosome 16
Neurology Genetics and epigenetics Neurology Precision medicine Omics

Decoding Autism on Chromosome 16

Santhosh Girirajan and colleagues map the hidden complexity of a common autism-linked deletion

By Santhosh Girirajan 09/13/2018 1 min read

Share

Why do individuals carrying the same genetic variant manifest such variable clinical outcomes – especially in the realm of neurodevelopmental disorders, such as autism? More than two dozen regions in the genome have been identified that, when deleted or duplicated, lead to neurodevelopmental disorders. The chromosome 16 deletion is one of the most frequent causes of autism, accounting for about 1 percent of all affected individuals. It has also been strongly linked with other phenotypes including obesity, epilepsy, and intellectual disability. The 16p11.2 deletion encompasses about 25 genes, of which several have important roles in nervous system development. Although single causative genes have been identified for classical deletion syndromes, such as Smith-Magenis syndrome, in the context of the 16p11.2 deletion, we were convinced that there could not be a single gene causing all of the above phenotypes; there had to be multiple genes with common functionality. So we began testing the effect of reducing the expression of individual genes – and pairwise combinations of genes – on neurodevelopmental phenotypes in flies (1).

So far, we have only mapped a general landscape of what could be going on within 16p11.2 and other copy number variants (CNVs) with variable phenotypic expression. The next step is to dissect each of these interactions in more sophisticated systems and map them back to specific sets of symptoms. In general, mapping specific genes for structural defects within CNVs has not been overly difficult because of the straightforward nature of identifying these phenotypes. For example, the TBX6 gene accounts for the scoliosis phenotype observed a small subset of individuals with the 16p11.2 deletion. In contrast, identifying specific gene combinations with neuropsychiatric effects and correlating them with severity will be challenging because it will involve mapping genes and their interactions in combination with everything else in the genomes of individuals with the deletion. In the end, it all comes down to pathways and how genes “talk” to one another within networks.

Credit: Girirajan laboratory, Penn State

We now plan to map gene interactions within CNVs and identify common pathways and their cellular mechanisms. Identifying the functional correlates might provide us some clues as to which genes, clusters, or specific pathways to target. Although we may develop some treatments for specific symptoms by repurposing drugs used to target similar cellular pathways, for others we might have to take what we find in flies to more sophisticated systems representative of human biology (such as mouse models, induced pluripotent stem cells, and organoids). Within the next five to 10 years, I would like to see deeper, quantitative phenotyping of clinical features in thousands of affected individuals with disease-associated CNVs, and more clarity of the molecular mechanisms underlying the patient phenotypes. I also hope that significant progress is made on identifying successful treatment strategies. To get our discoveries into the clinic, we need to have constant interactions between clinicians, scientists, and affected families. While we map specific genes, interactions, and molecular pathways to specific clinical features, clinicians can use this information to identify individuals with subtypes of these disorders, which could inform prognosis. And with more detailed phenotypic and molecular profiles, it could help with customized treatment and management strategies.

Newsletters

Receive the latest pathology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

References

  1. J Iyer et al., “Pervasive genetic interactions modulate neurodevelopmental defects of the autism-associated 16p11.2 deletion in Drosophila melanogaster”, Nat Commun, 9, 2548 (2018). PMID: 29959322.

About the Author(s)

Santhosh Girirajan

Santhosh Girirajan is Associate Professor of Biochemistry and Molecular Biology and Associate Professor of Anthropology at the Pennsylvania State University, University Park, USA.

More Articles by Santhosh Girirajan

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

False

The Pathologist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.