Subscribe to Newsletter
Inside the Lab Oncology, Digital and computational pathology

Computers Catching Cancer

If there’s one thing on which all pathologists agree, it’s that their workloads are becoming increasingly untenable. It is a discussion of increasing importance (see “All in a Day’s Work") – and with a growing patient population and a shortage of trainees entering the profession, solutions are difficult to find. Enter a promising pathology assistant: the computer.

With the rise of digital pathology, fewer and fewer pathologists are strangers to computer-aided diagnosis, but a new deep-learning computer network developed by researchers at Case Western Reserve University significantly ups the ante. The network demonstrated 100 percent accuracy in detecting and delineating invasive breast cancers in whole biopsy slides, and made the same determination in each individual pixel 97 percent of the time – exceeding the accuracy and consistency of the four pathologists against which it was tested (1).

So is it time to replace the human brain at the microscope with a digital one? Not just yet. “The network was really good at identifying the cancers, but it will take time to get up to 20 years of practice and training of a pathologist to identify complex cases and mimics, such as adenosis,” said Anant Madabhushi (2), study co-author and Director of the university’s Center of Computational Imaging and Personalized Diagnostics. Instead, he proposes that the network could triage cases for review by pathologists, saving time and allowing them to focus their attentions on the samples – and the patients – who need it most. “If the network can tell which patients have cancer and which do not, this technology can serve as triage for the pathologist, freeing their time to concentrate on the cancer patients.” And best of all, the software can be set to run independently while pathologists work (or sleep), alleviating the intensifying burden on pathology department staff.

Receive content, products, events as well as relevant industry updates from The Pathologist and its sponsors.
Stay up to date with our other newsletters and sponsors information, tailored specifically to the fields you are interested in

When you click “Subscribe” we will email you a link, which you must click to verify the email address above and activate your subscription. If you do not receive this email, please contact us at [email protected].
If you wish to unsubscribe, you can update your preferences at any point.

  1. A Cruz-Roa et al., “Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent”, Sci Rep, 7, 46450 (2017).
  2. PMID: 28418027.
  3. “Computer accurately identifies and delineates breast cancers on digital tissue slides” (2017). Available at: bit.ly/2pBV6dh. Accessed May 11, 2017.
About the Author
Michael Schubert

While obtaining degrees in biology from the University of Alberta and biochemistry from Penn State College of Medicine, I worked as a freelance science and medical writer. I was able to hone my skills in research, presentation and scientific writing by assembling grants and journal articles, speaking at international conferences, and consulting on topics ranging from medical education to comic book science. As much as I’ve enjoyed designing new bacteria and plausible superheroes, though, I’m more pleased than ever to be at Texere, using my writing and editing skills to create great content for a professional audience.

Related Application Notes
Tumor Genomic Profiling with SureSelect Cancer Tumor-Specific Assays

| Contributed by Agilent

Comprehensive Genomic Profiling with SureSelect Cancer CGP Assay

| Contributed by Agilent

Preventing Bias in scRNAseq Performed on Solid Tumors

| Contributed by Revvity

Related Product Profile
Diagnostics Genetics and epigenetics
QIAseq® Pan Cancer Multimodal cuts user interventions by 50%

| Contributed by QIAGEN

Register to The Pathologist

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:
  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Pathologist magazine

Register