Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Pathologist
  • Explore Pathology

    Explore

    • Latest
    • Insights
    • Case Studies
    • Opinion & Personal Narratives
    • Research & Innovations
    • Product Profiles

    Featured Topics

    • Molecular Pathology
    • Infectious Disease
    • Digital Pathology

    Issues

    • Latest Issue
    • Archive
  • Subspecialties
    • Oncology
    • Histology
    • Cytology
    • Hematology
    • Endocrinology
    • Neurology
    • Microbiology & Immunology
    • Forensics
    • Pathologists' Assistants
  • Training & Education

    Career Development

    • Professional Development
    • Career Pathways
    • Workforce Trends

    Educational Resources

    • Guidelines & Recommendations
    • App Notes

    Events

    • Webinars
    • Live Events
  • Events
    • Live Events
    • Webinars
  • Profiles & Community

    People & Profiles

    • Power List
    • Voices in the Community
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
Subscribe
Subscribe

False

The Pathologist / Issues / 2023 / Dec / A Library of a Million Slides
Technology and innovation Software and hardware Digital and computational pathology Research and Innovations

A Library of a Million Slides

How do we access thousands of whole-slide images quickly whilst retaining important clinical information? The answer could lie in deep learning…

By George Francis Lee 12/12/2022 News 2 min read

Share

As pathology becomes increasingly digitized, practitioners have never had larger libraries of whole-slide images (WSIs) at their fingertips. There’s just one problem: how do we make these vast collections of slides easy to use? How can we take advantage of gigapixels’ worth of samples in a way that isn’t just fast and intuitive, but also technically accurate? According to one team of researchers, the answer lies in deep learning.

Currently, if a pathologist wants to search a WSI repository for a certain morphological feature, the speed of the search is ultimately tied to how many images it has to look through (the bigger the library, the slower the search). This inverse relationship between size and speed ultimately affects clinical and research applications. So how do we resolve it?

Credit : Ed Uthman / Flickr.com

A recent investigation indicates that a form of self-supervised deep learning can be used to quickly locate images that match certain criteria regardless of overall library size (1). Rather than use standard methods to teach systems whether two or three images are similar to one another, the self-supervised image search for histology (SISH) algorithm looks at WSIs as integers and binary code, meaning that it requires no pixel or region of interest-level annotations.

The results of this approach seem to speak for themselves. SISH achieved accurate results in both general and rare diseases and offered rapid, consistent search speeds. Interestingly, the system can be used for not only WSIs, but also image patch retrieval.

One caveat of the SISH model is that it uses images, rather than words, to make a search query – limiting its applications for widespread use. The authors readily accept this and subsequently call for a multimodal version to be developed in which WSIs are paired with patient data, allowing pathologists to use written search terms on huge repositories in the future.

Newsletters

Receive the latest pathology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

References

  1. C Chen et al., “Fast and scalable search of whole-slide images via self-supervised deep learning,” Nat Biomed Eng, [Online ahead of print] (2022). PMID: 36217022.

About the Author(s)

George Francis Lee

Interested in how disease interacts with our world. Writing stories covering subjects like politics, society, and climate change.

More Articles by George Francis Lee

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Breathing New Life into Diagnostics
Technology and innovation
Breathing New Life into Diagnostics

January 22, 2024

6 min read

Jonathan Edgeworth on how metagenomics could transform testing for respiratory infections

Opening a Window into Brain Trauma
Technology and innovation
Opening a Window into Brain Trauma

January 18, 2024

4 min read

Raman spectroscopy shows promise as the first point-of-care diagnostic device for TBI

Molecular Spectacular
Technology and innovation
Molecular Spectacular

January 8, 2024

1 min read

A look at last year’s most interesting molecular pathology stories

Cracking Colon Cancer
Technology and innovation
Cracking Colon Cancer

January 25, 2024

1 min read

How a new clinically approved AI-based tool enables rapid microsatellite instability detection

False

The Pathologist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.