Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Pathologist
  • Explore Pathology

    Explore

    • Latest
    • Insights
    • Case Studies
    • Opinion & Personal Narratives
    • Research & Innovations
    • Product Profiles

    Featured Topics

    • Molecular Pathology
    • Infectious Disease
    • Digital Pathology

    Issues

    • Latest Issue
    • Archive
  • Subspecialties
    • Oncology
    • Histology
    • Cytology
    • Hematology
    • Endocrinology
    • Neurology
    • Microbiology & Immunology
    • Forensics
    • Pathologists' Assistants
  • Training & Education

    Career Development

    • Professional Development
    • Career Pathways
    • Workforce Trends

    Educational Resources

    • Guidelines & Recommendations
    • App Notes

    Events

    • Webinars
    • Live Events
  • Events
    • Live Events
    • Webinars
  • Profiles & Community

    People & Profiles

    • Power List
    • Voices in the Community
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
Subscribe
Subscribe

False

The Pathologist / Issues / 2022 / May / Backing the Biosensor Movement
Oncology Biochemistry and molecular biology Technology and innovation Oncology Molecular Pathology

Backing the Biosensor Movement

A semiconductor microchip opens new doors for point-of-care testing

By Liv Gaskill 05/30/2022 News 2 min read

Share

Rapidly detecting disease is a crucial part of quality healthcare and, with telemedicine and portable technology on the rise, there is a growing appetite for better point-of-care testing – whether in the clinic or remotely at a patient’s home. Now, researchers at the Toyohashi University of Technology in Japan have proposed a minimally invasive biosensor that uses semiconductor micromachine technology to detect disease (1). 

Traditional sensors of this type use a thin film of antibodies, deposited using spin coating and ultraviolet irradiation, to trap antigens for detection; the electrical repulsion between trapped antigens deforms this film, leading to a sensor readout. However, this process of antigen capture and deformation also deteriorates the film – so, for their biosensor, the researchers opted to use minimally invasive chemical vapor deposition to create the film, yielding a uniform, sensitive detection device with a film five to 10 times thinner than previous attempts.

Finally, the team tested the new biosensor with prostate cancer biomarkers, demonstrating a molecular selectivity and concentration dependence for prostate-specific antigens with concentrations ranging between 100 ag/mL and 1 µg/mL. Furthermore, the sensor’s minimum limit of detection was reported to be 2,000,000-fold lower than that of existing alternatives. Based on these findings, the researchers believe the biosensor could offer new options for point-of-care prostate cancer testing, allowing biomarker detection with high portability, sensitivity, and stability.

What’s next? The researchers hope to continue improving overall test speed and portability and to adapt their biosensor to detect other diseases. Ultimately, they hope to increase early detection of a wide variety of diseases and “create a society where everyone will be able to take tests easily and undergo medical examinations by physicians remotely (2).”

Newsletters

Receive the latest pathology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

References

  1. T Maeda et al., Sensors (Basel), 22, 1356 (2022). PMID: 35214266.
  2. Toyohashi University of Technology (2022). Available at: https://bit.ly/3wlkR6i.

About the Author(s)

Liv Gaskill

During my undergraduate degree in psychology and Master’s in neuroimaging for clinical and cognitive neuroscience, I realized the tasks my classmates found tedious – writing essays, editing, proofreading – were the ones that gave me the greatest satisfaction. I quickly gathered that rambling on about science in the bar wasn’t exactly riveting for my non-scientist friends, so my thoughts turned to a career in science writing. At Texere, I get to craft science into stories, interact with international experts, and engage with readers who love science just as much as I do.

More Articles by Liv Gaskill

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Turning Tides
Biochemistry and molecular biology
Turning Tides

January 9, 2024

3 min read

A new study shows evidence for sustained human-to-human transmission of mpox since 2016

Molecular Spectacular
Biochemistry and molecular biology
Molecular Spectacular

January 8, 2024

1 min read

A look at last year’s most interesting molecular pathology stories

qPCR Infectious Disease Detective
Biochemistry and molecular biology
qPCR: Infectious Disease Detective

January 4, 2024

3 min read

How quantitative polymerase chain reaction really hits the mark in epidemic control and ID detection

Case of the Month
Biochemistry and molecular biology
Case of the Month

January 11, 2022

1 min read

False

The Pathologist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.