Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Pathologist
  • Explore Pathology

    Explore

    • Latest
    • Insights
    • Case Studies
    • Opinion & Personal Narratives
    • Research & Innovations
    • Product Profiles

    Featured Topics

    • Molecular Pathology
    • Infectious Disease
    • Digital Pathology

    Issues

    • Latest Issue
    • Archive
  • Subspecialties
    • Oncology
    • Histology
    • Cytology
    • Hematology
    • Endocrinology
    • Neurology
    • Microbiology & Immunology
    • Forensics
    • Pathologists' Assistants
  • Training & Education

    Career Development

    • Professional Development
    • Career Pathways
    • Workforce Trends

    Educational Resources

    • Guidelines & Recommendations
    • App Notes

    Events

    • Webinars
    • Live Events
  • Events
    • Live Events
    • Webinars
  • Profiles & Community

    People & Profiles

    • Power List
    • Voices in the Community
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
Subscribe
Subscribe

False

The Pathologist / Issues / 2019 / Jun / A SMArter Way to Diagnose Diabetes
Hematology Hematology Technology and innovation Biochemistry and molecular biology Screening and monitoring Molecular Pathology

A SMArter Way to Diagnose Diabetes

Could a polymer that “biopsies” living cells lead to improved diabetes diagnosis and monitoring?

By Michael Schubert 06/10/2019 Quick Read (pre 2022) 1 min read

Share

Diabetes – a disease so common that almost everyone knows someone who has it, but so comprehensive that few members of the public are fully aware of the risks it can pose to patients. For example, the disease can cause severe damage to blood vessels throughout the body – and that damage begins early on. The silver lining? A method of detecting the blood vessel damage could also offer a route to earlier diagnosis and treatment of diabetes (1).

“We wanted to exploit our recent discovery that a novel chemical tool, the polymer styrene maleic acid (SMA), can ‘biopsy’ human cells, extracting proteins without causing cell death,” explains Andrew Smith, a researcher from the School of Biomedical Sciences at the University of Leeds. “This project will build on our previous findings with SMA by using it as a tool to investigate diabetic vascular disease development and identify markers linked to specific aspects of this disease.”

SMA isolates proteins from cell membranes in tiny, disc-like nanoparticles due to its structure, which cuts through the membrane to release the disc and maintain its stability. “We found that we were able to identify proteins from membranes and elsewhere in the cells in our collected material,” says Smith.

The research group now plans to exploit their finding that SMA can nondestructively sample proteins from cells and intact tissues. To that end, they have a series of six goals.

But what happens if proteins that signal disease progression are identified? “Detecting a biomarker of change in cells due to the pre-diabetes state will give solid evidence of the need for intervention,” explains Smith. “Early diagnosis of type 2 diabetes is linked to significant risk reduction, with scope for further reduction if treatments can be directed by evidence obtained from the site of disease damage.” To that end, the researchers will not only identify biomarkers of disease development in patients with established diabetes, but also search for markers of higher risk of disease complications.

Newsletters

Receive the latest pathology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

References

  1. University of Leeds, “University of Leeds researchers awarded Heart Research UK grant to spot diabetes early” (2019). Available at: https://bit.ly/2HN5fPr. Accessed May 23, 2019.

About the Author(s)

Michael Schubert

While obtaining degrees in biology from the University of Alberta and biochemistry from Penn State College of Medicine, I worked as a freelance science and medical writer. I was able to hone my skills in research, presentation and scientific writing by assembling grants and journal articles, speaking at international conferences, and consulting on topics ranging from medical education to comic book science. As much as I’ve enjoyed designing new bacteria and plausible superheroes, though, I’m more pleased than ever to be at Texere, using my writing and editing skills to create great content for a professional audience.

More Articles by Michael Schubert

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Case of the Month
Hematology
Case of the Month

January 11, 2022

1 min read

Enriching Our Understanding of Multiple Myeloma
Hematology
Enriching Our Understanding of Multiple Myeloma

February 9, 2022

3 min read

Career Snapshots with Robert Dunn
Hematology
Career Snapshots with Robert Dunn

May 25, 2022

1 min read

Michael Schubert interviews Robert Dunn on working as a biomedical scientist in cytogenetics

A Moment in the Sun
Hematology
A Moment in the Sun

June 23, 2022

4 min read

The decades-long fight for T cells to earn their place in the limelight

False

The Pathologist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.