Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Pathologist
  • Explore Pathology

    Explore

    • Latest
    • Insights
    • Case Studies
    • Opinion & Personal Narratives
    • Research & Innovations
    • Product Profiles

    Featured Topics

    • Molecular Pathology
    • Infectious Disease
    • Digital Pathology

    Issues

    • Latest Issue
    • Archive
  • Subspecialties
    • Oncology
    • Histology
    • Cytology
    • Hematology
    • Endocrinology
    • Neurology
    • Microbiology & Immunology
    • Forensics
    • Pathologists' Assistants
  • Training & Education

    Career Development

    • Professional Development
    • Career Pathways
    • Workforce Trends

    Educational Resources

    • Guidelines & Recommendations
    • App Notes

    Events

    • Webinars
    • Live Events
  • Events
    • Live Events
    • Webinars
  • Profiles & Community

    People & Profiles

    • Power List
    • Voices in the Community
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
    • Pathology Captures
Subscribe
Subscribe

False

The Pathologist / App Notes / 2019 / SureSeq™ FFPE DNA Repair Mix* and hybridisation-based enrichment provide superior variant detection in next-generation sequencing even from 10 ng of severely formalin compromised DNA

SureSeq™ FFPE DNA Repair Mix* and hybridisation-based enrichment provide superior variant detection in next-generation sequencing even from 10 ng of severely formalin compromised DNA

05/07/2019

Share

Introduction

With advances in next-generation sequencing (NGS) technology, genetic information can be extracted from an increasingly diverse range of samples. Formalin-fixed, paraffin-embedded (FFPE) storage is a standard method for archiving tissue biopsies and these biopsies can be used in NGS, for example to study cancer development and progression.

However, the quality of DNA in FFPE samples is often severely damaged and compromised compared to other methods of sample storage. Consequently, it may be difficult to distinguish between true low frequency mutations and damage-induced low frequency false positives. In these samples, hybridisation-based target enrichment (where input DNA has been sheared into short, fragments and selectively captured) provides superior performance compared to amplicon-based enrichment. This is due to the superior tolerance of the hybridisation approach for the fragmented DNA routinely found in FFPE samples. Hybridisation-based enrichment also provides greater uniformity of coverage, fewer false positives and superior variant detection due to use of fewer PCR cycles1.

To improve the sequencing results of FFPE samples even further, a DNA pre-treatment step can be introduced to address different types of DNA damage. OGT’s SureSeq FFPE DNA Repair Mix uses a mixture of enzymes to repair a range of DNA defects including deamination of cytosine, nicks and gaps, oxidised bases, and blocked 3’ ends.

In this study, carried out in collaboration with Horizon Discovery, formalin-compromised DNA (fcDNA) samples of differing severity were repaired with the SureSeq FFPE repair mix and sequenced using a SureSeq custom hybridisation-based panel. The aim of the study was to investigate the effect of the repair mix and also the performance of the hybridisation-based enrichment method on DNA with varying levels of damage by measuring critical parameters at different points in the sequencing protocol:

  • DNA length distribution after extraction
  • DNA yield immediately before capture
  • Mean target coverage in sequencing
  • The ability to accurately detect known variants with excellent uniformity

>> Download the full Application Note as PDF

Newsletters

Receive the latest analytical scientist news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

Explore More in Analytical Science

Dive deeper into the analytical science. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

Oncomine Dx Target Test – an IVD NGS solution for every lab

February 20, 2019

What to Consider When Choosing a Microscope Camera

March 5, 2019

Comparison of cfDNA Reference Material Prepared using Enzymatic Fragmentation or Sonication for the Validation of Liquid Biopsy Assays

May 28, 2019

Rapid, High-Performance Tumor Profiling Using CleanPlex® OncoZoom® Cancer Hotspot Panel and SOPHiA™ AI

April 18, 2019

False

The Pathologist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.